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Abstract

We consider stable three-dimensional matchings of three genders (3GSM). Alkan [Alkan, A., 1988. Non-
existence of stable threesome matchings. Mathematical Social Sciences 16, 207–209] showed that not all
instances of 3GSM allow stable matchings. Boros et al. [Boros, E., Gurvich, V., Jaslar, S., Krasner, D., 2004.
Stable matchings in three-sided systems with cyclic preferences. Discrete Mathematics 286, 1–10] showed
that if preferences are cyclic, and the number of agents is limited to three of each gender, then a stable
matching always exists. Here we extend this result to four agents of each gender. We also show that a number
of well-known sufficient conditions for stability do not apply to cyclic 3GSM. Based on computer search, we
formulate a conjecture on stability of “strongest link” 3GSM, which would imply stability of cyclic 3GSM.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The stable marriage problem is: Given a set of men and a set of women, find a matching that is
stable in the sense that no man m and woman w who both prefer each other to their current
partners in the matching. Gale and Shapley (1962) introduced this problem and gave a
constructive proof of the existence of a stable matching for any combination of preferences. The
theory of stable matchings has become an important subfield within game theory, as documented
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by the book of Roth and Sotomayor (1990), but the first book on the subject was written by
famous computer scientist Donald E. Knuth (1976). Knuth lists a dozen suggested further
directions for research, one of which is to investigate three-dimensional stable matching, say of
women, men and dogs. Such a matching would be a partition of the agents into triples consisting
of one agent of each type. A matching is stable if there is no blocking triple, i.e. a triple that all of
its members would strictly prefer to the current matching. A matching is strongly stable if there is
no weakly blocking triple, i.e. a triple strictly preferred by some member and weakly preferred by
all members. We will follow Ng and Hirschberg (1991) and refer to a system of agents of three
types, together with their preferences on triples, as an instance of 3GSM (Three Gender Stable
Marriage problem).

Alkan (1988), who seems to have been the first who published a result on 3GSM, found an
instance where no stable matching exists. Ng and Hirschberg (1991) showed that a number of
instances of 3GSM do not have any strongly stable matchings, and proved that the decision
problem is NP-complete. As an open problem, Ng and Hirschberg mention the cyclic (or circular)
3GSM, where women care only about which man is in the triple, and similarly men care only
about dogs, and dogs care only about women. The origin of this problem is attributed to Knuth.
Recently, Boros et al. (2004) proved stability for cyclic 3GSM whenever n≤3, where n is the
number of agents of each type. (More generally, their result says that for any integer s≥2, cyclic
s-GSM has a stable matching whenever n≤ s.) They also show that their method of proof breaks
down for larger values of n.

In this paper, we will extend the partial result of Boros et al. by proving stability of cyclic
3GSM for n=4. The proof, given in Section 3, is a quite technical case-by-case analysis that does
not easily generalize to larger n. Therefore we also investigate whether stability of cyclic 3GSM
would be implied by any of a number of well-known general sufficient conditions for stability
(balancedness, effectivity function stability). In Section 4 we show that none of these conditions
apply to cyclic 3GSM.

Another possible approach is to find a suitable relaxation of the cyclicity condition. Danilov
(2003) proved stability of 3GSM under a certain acyclic lexicographic preference rule, where men
base their preferences on triples in the first place on the woman in the triple (and in the second
place on the dog), and women similarly are interested primarily in men. Boros et al. (2004)
studied the lexicographic relaxation of cyclic preferences, where women care in the first place
about men (and in the second place about dogs), and cyclically for men and for dogs. However,
under this rule they found instances of 3GSM where no stable matching exists. In this paper we
propose another relaxation of cyclicity: “strongest link 3GSM” (defined in the next section).
Evidence from computer search leads us to conjecture that strongest link 3GSM always allows
stable matchings, see Section 5.

2. Problem definition

We consider three sets of agents: W, M, D (for women, men and dogs). Let n be the maximal
number of agents in a set; e.g. n=3 means that we have at most nine agents (three women, three
men, three dogs). Without loss of generality we can assume that we have the maximal number n of
agents of each gender, for otherwise we can just fill the ranks with dummy agents who everybody
likes less than any real agent. A triple is an element ofW×M×D, and a set of n disjoint triples is a
matching.

Each woman w has a preference order, denoted by >w, over the 2n agents in M⋃D.
Analogously, men have preferences over D⋃W, and dogs over W⋃M. Preferences can
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equivalently be expressed as ranks, where the most preferred option is ranked one, etc. For each
woman w we will derive a weak preference ordervw overM×D, i.e. over all possible triples that
include w. By “weak” we mean that a woman may be indifferent between some triples. T≻wT′
means that w strictly prefers T to T′ whereas TvwT′ also includes the case of indifference.
Analogously for men and dogs, let P be the set of all (2n)! possible combinations of preference
orders on agents. Let PT be the set of all n2! possible combinations of preference orders on
triples. A triple preference rule is a mapping from P to PT , i.e. a derivation of≻a from >a for any
agent a.

Given a triple preference rule, stable matchings and blocking triples are defined as in the
Introduction.

The general problem is: Given a triple preference rule, does a stable matching exist for every
instance of 3GSM of size n? We will mainly discuss the cyclic triple preference rule: Let t=wmd
and T′=w′m′d′ be two arbitrary triples. Then T≻wT′ if and only if m>wm′, and cyclically for
men and dogs.

3. Cyclic 3GSM is stable for n≤4

As promised in the Introduction, we shall prove the following result.

Theorem 1. If n≤4, every instance of cyclic 3GSM has a stable matching.

The number of possibilities is too large for an exhaustive search, see Section 5. Instead we
have found a way to reduce the possibilities to a few cases.

3.1. Notation

Given a matching, we say that an agent is i-content if she is matched (i.e. in the same triple)
with the agent she ranks as number i.

We will denote triples by abc instead of wmd to signify that the first agent of the triple is not
necessarily a woman, but that the order satisfies cyclicity (i.e. a's have preferences on b's, who
have preferences on c's, who have preferences on a's).

A triple abc is called a 11i-triple if a ranks b as number 1, b ranks c as number 1, and c ranks a
as number i. We will use “she” as a generic pronoun.

We will often use a dot diagram to describe partial information about the preferences. Dots
represent agents, dots in the same column belong to the same gender, and edges from one column
to the next represent how the left agent ranks the right agent. A solid line means “rank 1”, a dashed
line means “rank 2” and an i-labeled line means “rank i”. Here is an example:

The example diagram contains the information that a1's second-best choice is b2, and a1's
favorite is b1 whose favorite is c1 who ranks a2 as number 3. To make the following pages more
readable, we will omit the dot labels, always implicitly referring to the labeling above. (Of course,
for n=4 there will be an additional row a4b4c4a4 at the bottom.)
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3.2. A lemma for n=3

Boros et al. (2004) proved that there is always a stable matching for any instance of cyclic
3GSM with n=3. In order to get to the next value of n, we will first need a slight strengthening of
their result.

Lemma 2. For any cyclic 3GSM with n=3, and any agent x, there is a stable matching such that
either x is 1-content, or x's favorite is 1-content and x is 2-content.

Proof. Without loss of generality we can assume that x=a1, whose favorite is b1, whose favorite
is c1. We will consider the two cases whether there is a 111-triple or not.

Suppose there is a 111-triple abc. Then pick that triple to the matching. Since a, b and c
all are 1-content we can choose the other two triples however we like—the resulting
matching will be stable anyway. If b1=b she is 1-content and we choose the remaining two
triples so that a1 gets her first or second choice. If b1≠b then a1≠a and we let the first triple
be a1b1c′ where c′ is b1's first or second choice, and the second triple be the three remaining
agents.

In the following we assume there is no 111-triple. Say, without loss of generality, that c1's
favorite is a2.

By the assumption that there is no 111-triple, a2's favorite is not b1, so we can assume that it is
b2. Now, b2's favorite is not c1, so we can assume that it is c2.

Now the matching a1b1c1, a2b2c2, a3b3c3 is stable: a1, a2, b1 and b2 are 1-content, so a blocking
triple must contain both a3 and b3 which are already together. □

3.3. Case-by-case analysis

We will divide all instances of cyclic 3GSM with n=4 into the following cases:

The 111-case: There is a 111-triple.
The 112-case: There is no 111-triple, but there is a 112-triple.
The 113-case: There is no 111- or 112-triple, but there is a 113-triple.
The 114-case: There is no 111-, 112- or 113-triple.

If there is no 11i-triple for i< j in a given matching, then we say that the matching satisfies the
11j-condition.
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The 111-case is trivial: remove the 111-triple and use Lemma 2 to find a stable matching of the
remainder; then this matching together with the 111-triple constitutes a stable matching of the
original instance, since the agents in the 111-triple are 1-content.

The 114-case is also simple: If there is an agent xwho is the favorite of at least two agents, then
x's favorite must rank some of these people as number 1, 2 or 3, and we get a 111-, 112-, or 113-
triple. Thus, in the 114-case we know that no two agents have the same favorite. Simply let all ai
be 1-content in order to obtain a stable matching.

3.3.1. The 112-case
We have the following situation.

By the 112-condition, a2's favorite is not b1, so we can assume it is b2. Now b2's favorite is not
c1, so we can assume it is c2.

We remove the triple a1b1c1 for a while. By Lemma 2 there is a stable 3-matching of the
remaining agents such that either a2 is 1-content, or b2 is 1-content and a2 is 2-content. This 3-
matching forms a 4-matching together with the triple a1b1c1. We will show that this 4-matching is
stable.

Suppose there is a blocking triple. It has to contain someone among a1, b1 and c1 Since a1 and
b1 are 1-content they do not belong to the blocking triple, so c1 does. The only agent c1 wants to
switch to is a2, so a2 belongs to the blocking triple. Then a2 cannot have her favorite b2, so, by
construction of the 3-matching, a2 has her favorite among b3 and b4, and b2 has c2. So a2 wants to
switch only to b2 or possibly b1, both of which are 1-content.

3.3.2. The 113-case
If some agent x is the favorite of at least three agents, then x's favorite must rank some of these

agents as number 1 or 2, and we get a 111- or a 112-triple. Therefore, we can split the 113-case
into two subcases:

Subcase 1: Every agent is the favorite of either zero or two agents.
Subcase 2: There is an agent who is the favorite of exactly one agent, but every agent is the
favorite of at most two agents.
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3.3.2.1. Subcase 1. Here we suppose that every agent is the favorite of either zero or two agents.
Then we have the following situation.

By the 113-condition we know that c1 ranks a1 and a2 as numbers 3 and 4, so a3 and a4 must be
numbers 1 and 2.

We see that b4's favorite is not c1, so we can assume it is c4. Using the 113-condition again, we
obtain the following.

Now we use that every favorite agent is the favorite of exactly two agents.

a2's second-best choice cannot be b3 or b4, since that would violate the 113-condition, so it
must be b2. By applying the same reasoning to a3, b1 and b4, we obtain the following diagram.
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Now the matching a1b1c3, a2b2c1, a3b3c4, a4b4c2 is stable: a1 and a4 are 1-content, so a
blocking triple must contain a2 or a3, say a2. But a2 wants to switch only to b1 who wants to
switch only to c1 who already has got a2. The same reasoning works for a3.

3.3.2.2. Subcase 2. Here we suppose that there is an agent, say b3, who is the favorite of exactly
one agent, but every agent is the favorite of at most two agents.

If every bi is the favorite of exactly one agent, then it is trivial to find a stable matching: Just let
all ai be 1-content. So we assume there is a bi, say b1, who is the favorite of exactly two agents.
Then we have the following situation:

By the 113-condition, b1's favorite must rank a1 and a2 as 3 and 4.

Now, b3 or b4 cannot have c1 as a favorite, since c1 ranks a3 and a4 as 1 and 2, and that would
violate the 113-condition. Thus we can assume that b3's favorite is, say, c3.

Suppose b4 does not have c3 as a favorite. Then we can assume that b4's favorite is c4
(remember that we know it is not c1). But then a1b1c1, a2b2c2, a3b3c3, a4b4c4 is a stable matching
since all ai and bi are 1-content, except a2 and b2 which are already together. Thus we can assume
that b4's favorite is c3.
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Again, form the matching a1b1c1, a2b2c2, a3b3c3, a4b4c4. What are the possible blocking
triples? We observe that a2 is the only aiwho is not 1-content, so a blocking triple must contain a2.
Since b1 and b3 are 1-content and a2 already has got b2, it follows that b4 belongs to the blocking
triple. We also see that c1 cannot belong to the blocking triple, since c1 already has a1 whom she
prefers to a2. Thus, the only possible blocking triple is a2b4c3. In that case, a2 must prefer b4 to b2.
In the same manner (using the matching a1b1c1, a2b2c2, a3b3c4, a4b4c3 instead) we deduce that a2
prefers b3 to b2. This means that a2's second-best choice is either b3 or b4. For symmetry reasons
we can assume it is b3.

By the 113-condition we know that c3's favorite cannot be a2, a3 or a4, so it must be a1.

Using the 113-condition again, we see that a1's second-best choice cannot be b3 or b4, so it
must be b2.

Now, the matching a1b2c2, a2b1c1, a3b3c3, a4b4c4 is stable: The only ai who is not 1-content is
a1. She wants to switch only to b1 who is 1-content.

4. Sufficient conditions for stability

The core of a game is the set of all outcomes for which no coalition of players can enforce
another outcome that is preferable to all members of the coalition. For matching games it is easy
to see that existence of a stable matching is equivalent to nonemptiness of the core (cf. Roth and
Sotomayor, 1990). There exist several general approaches (i.e. sufficient conditions) to proving
that a game has a nonempty core. The classic one is to show that the game is balanced in the sense
of Scarf (1967). A reason to try this approach is that Quinzii (1984) showed (in a more general
setting) that the usual two-dimensional matching game is balanced. However, we shall see below
that our three-dimensional matching game is not balanced, making this approach hopeless.

There are also other types of sufficient conditions, framed in terms of “effectivity functions”,
cf. Boros and Gurvich (2000) for a good review of this theory. In essence, an effectivity function
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describes for any coalition which outcomes this coalition has the power to make sure that they
would not occur. Peleg (1984) showed that “convex effectivity functions” are stable, i.e. the core
is nonempty for any utility function. Boros and Gurvich (2000) describe a number of such
conditions guaranteeing stability of effectivity functions. However, it is easy to see that no
effectivity function argument can suffice to prove stability of cyclic 3GSM. The reason is that the
effectivity function is the same as for unrestricted 3GSM, for which we already know (Alkan,
1988) that there are counterexamples to stability.

4.1. Cyclic 3GSM is not a balanced game

Following Scarf (1967) a collection C of triples is balanced if it is possible to find nonnegative
real weights δT, for each triple T in C, such that, for each agent x,

X

T :xaTaC

dT ¼ 1

A utility vector is a list where every agent has written down her utility goal, that is, how happy
she hopes to become. A utility vector is realizable if there is a matching such that every agent
reaches her utility goal. A utility vector is realizable for a triple if all agents in the triple would
reach their utility goal if the triple were formed.

For the general definition of a balanced game we refer to Scarf (1967), who proved that the
core of a balanced game is nonempty. Suffice it to say that cyclic 3GSM would be a balanced
game if, for every balanced collection C of triples, a utility vector is realizable if it is realizable for
every triple in C.

We will present a counterexample of size 3+3+3. Let C be the collection of triples
corresponding to the shaded triangles in Fig. 1. This collection is balanced, since every agent
belongs to exactly two triples (let all δT=1/2). Choose the preferences so that the edges in the
figure correspond to rank 1 or 2. For example, a1 will rank b1 and b3 as numbers 1 and 2 (in any
order) and b2 as number 3. Now consider the utility vector where every agent hopes to get at least
her second-best choice. This is obviously realizable for every triple in C, so if the game were
balanced, the utility vector would be realizable. Since every instance of “x ranks y as number 1 or
2” has a corresponding edge in the figure, a realization of the utility vector is equivalent to a
disjoint family of triangles (not necessarily shaded) in the figure which covers all agents. But
there is no such family: To cover a2, either of the triangles a2b1c1 and a2b2c2 must belong to the
a1

b1 c1

a2

b2 c2

a3

c3 b3

Fig. 1. An example showing that cyclic 3GSM is not a balanced game.
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family. But none of the three triangles containing a1 is disjoint with a2b1c1, and none of the three
triangles containing a3 is disjoint with a2b2c2.

5. Evidence from computer search

In this paper we have investigated Knuth's problem on stable three-dimensional matching
under cyclic preferences, and improved on the partial solution from n=3 to 4 agents of each type.
Presumably one reason that this problem is still open, after almost 30 years, is that it is difficult.
We have seen that several general approaches to prove stability do not work.

For any given n, the number of instances is finite, and hence exhaustive search is
theoretically possible. In practice, the number of possible combinations of preferences is
simply too huge, (2n)!3n, since each agent ranks all 2n agents of other genders. Even if
isomorphic copies were deleted, the number of instances is large already for n=3 and
daunting for n>3. Nonetheless, in order to heuristically investigate the stability of any given
triple preference rule, we wrote a computer program that starts by generating a random
instance of a given size n≤5. For this instance, each of the n!2 possible matchings are
checked for stability. The number of stable matchings is recorded. Then a local search for
instances with fewer stable matchings is carried out as follows: Each of the 3n agents, in turn,
changes its preference list to every possible alternative permutation. For each of these
instances the number of stable matchings is computed, and search proceeds by steepest
descent until a local minimum is found, after which the procedure is repeated from a new
random starting point.

If an instance with zero stable matchings is found, we have a counterexample to the existence
of stable matchings for the given rule. On the other hand, if no instance with zero stable matchings
is found, then we have an indication that there is no counterexample. More specifically we obtain
an indication of the minimum number of stable matchings.

In addition to the cyclic preference rule, we have studied the following two rules for triple
preferences. Let T=wmd and T′=w′m′d′ be two arbitrary triples.

• Weakest link: T≻wT′ if and only if minw(m, d)>wminw(m′, d′), and cyclically for men and
dogs. Thus agents rank triples according to their least preferred partner, the weakest link.

• Strongest link: T≻wT′ if and only if maxw(m, d)>wmaxw(m′, d′), and cyclically for men
and dogs. Thus agents rank triples according to their most preferred partner, the strongest
link.

Note that the cyclic rule can be derived as a special case both of the weakest link rule and the
strongest link rule.

For n=4 the computer found counterexamples to stability under the weakest link rule, as well
as for strong stability under the cyclic rule. All counterexamples are available from the authors.

However, quite extensive computer search for n=4 and n=5 supports the following
conjecture.

Conjecture 3. Every instance of strongest link 3GSM (with n≥2) has at least two stable
matchings.

This conjecture would imply stability of cyclic 3GSM. In fact, for cyclic 3GSM the computer
always find many stable matchings, and it seems that the minimal number of stable matchings
increases with n. We do not have enough evidence for a more precise conjecture.
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